
J .  Fluid Mech. (1985). vol. 151, pp. 189-217 
Printed in &eat Britain 

189 

Instability and wave over-reflection in stably 
stratified shear flow 

By RICHARD S. LINDZEN 
Center for Meteorology and Physical Oceanography, M.I.T., Cambridge, MA 

AND JOHN W. BARKER 
Department of Atmospheric Physics, Clarendon Laboratory, Oxford, England 

(Received 29 December 1983 and in revised form 31 July 1984) 

We reexamine the related problems of instability of parallel shear flows and 
over-reflection of internal waves at a critical level, concentrating on the stratified case. 
Our primary aim is to delineate the specific aspects of a flow that permit overreflection 
and instability. A related and partly realized aim is to develop a mechanistic ‘picture ’ 
of how over-reflection and instability work. In  the course of this study we have also 
uncovered some new results concerning the instability of stratified shear flows - 
showing how regions of enhanced static stability and enhanced damping can 
destabilize otherwise stable flows. 

For the scattering of steady plane waves, we show that, of the conditions found 
by Lindzen & Tung (1978)’ in the unstratified case, only the existence of wave- 
propagation regions above and below the critical level is always necessary for 
over-reflection (at least in the absence of damping), although a trapping region around 
the critical level and a reflecting surface bounding the upper wave region may play 
crucial roles in some cases. Our results suggest that the role of the upper wave region 
may be to allow a wave flux through the critical level. Moreover, we show numerically 
that the effect of an upper wave region can be mimicked by a region of localized 
damping which leads to over-reflection as well. 

We also consider an initial-value problem, using numerical methods. When a wave 
is incident on the incident level, the reflection and transmission coefficients grow 
smoothly to their final values. The rate of growth depends on the flow parameters, 
but there is some evidence to suggest there is a characteristic timescale involved that 
depends only on the shear (and not on wave travel time). This fits a mechanistic 
picture of over-reflection and instability that we describe, in which the essential part 
is a kinematic interaction between wave and mean flow a t  the critical level, depending 
only on shear. 

1. Introduction 
In this paper we shall discuss the linear stability of a stratified shear flow and the 

reflection and transmission of internal waves at a critical level with the aims of 
delineating the conditions under which instability, over-reflection and overtrans- 
mission can occur. We find that the most meaningful expression of these conditions is 
in terms of the wave-propagation properties of the basic state being perturbed. An 
additional, but less clearcut, aim is to develop a mechanistic picture of how instability 
and over-reflection function. In  passing we will present some new results on the 
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instability of stratified shear flows - showing how otherwise-stable fiows can be 
destabilized by introducing regions of enhanced Richardson number and/or damping. 

Recent work by Lindzen and others (Lindzen 1974; Lindzen, Farrell & Tung 1980; 
Lindzen & Rosenthall976, 1981,1983; Lindzen & Tung 1978; Rosenthal & Lindzen 
1983a, b) has shown instability and over-reflection to be closely related. Their results 
show that instability may be viewed as an interaction between internal waves and 
the mean flow. This interaction occurs at a critical level (where the horizontal phase 
speed of the wave is equal to the mean shear velocity U(z ) ) ,  where the internal waves 
can be over-reflected. It has been shown that instability results when over-reflected 
waves are contained in regions of appropriate dimensions. We discuss this in detail 
in $3. 

It is known that over-reflection can occur a t  a critical level only if the Richardson 
number there is less than a quarter (Miles 1961 ; Howard 1961), but this alone is not 
a sufficient condition. Having considered a number of different problems, stratified 
and unstratified, with and without rotation and baroclinic effects, Lindzen & Tung 
(1978) proposed four conditions that appeared to be necessary for over-reflection. 
These conditions are phrased in terms of the ‘wave geometry’ of the problem; that 
is, the particular configuration of ‘wave regions’, where the internal wave may 
propagate normally to the basic shear flow, and ‘trapping regions’, where the solution 
will show exponential growth or decay. In this paper we confine our attention mainly 
to the stratified problem, because it offers the flexibility to specify this geometry, 
unlike the unstratified shear-flow problem, where the geometry is largely fixed by the 
existence of an inflection point. 

In $4 we present exact solutions in some simple cases which show that two of these 
conditions, a ‘trapping region’ near the critical level, and a reflecting surface to one 
side of it, are not in fact necessary, though each may have a role to play in some 
cases. 

The remaining conditions require that there should be a ‘wave region’ on each side 
of the critical lavel. Clearly, one such region is necessary, for there must be waves 
somewhere if there is to be any reflection at  all. For inviscid problems, the second 
region also proves to be essential. This immediately accounts for the stability of 
stratified shear flow where shear dii/dz and static stability are constant and where 
Ri < a; namely, such a state supports no wave propagation. The stability of this 
profile was shown using conventional methods by Taylor (1931), Goldstein (1931) and 
Case (1960). The problem is sometimes referred to as the Taylor-Goldstein problem. 
Two regions of wave propagation can be introduced into the problem by increasing 
the static stability in two distinct regions sufficiently to raise Ri, the Richardson 
number, above a in these two regions. This is shown to produce both over-reflection 
and instability. 

In $5 we suggest a role for the second wave region, and present some evidence to 
support it. Our suggestion is that the role of the second wave region may be t o  allow 
a wave flux to pass through the critical level. It seems plausible that, without such 
a flux, the wave may not ‘see’, or properly interact with, the critical level; if there 
is no second wave region, and the fluid is bounded by a solid wall or extends to infinity, 
then the Eliassen-Palm theorems state that there is no such flux. 

If this suggestion is correct, then anything that induces a wave flux through the 
critical level should give rise to over-reflection. To test this, we introduced a region 
of linear damping above the critical level in a case where the second wave region was 
absent (the problem is otherwise inviscid). The damping region acts as an energy sink, 
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and thus draws a wave flux through the critical level from the wave region below 
it. We find that over-reflection can indeed be induced by the damping, and so feel 
that this is evidence in favour of our suggestion. It also provides a second way to 
destabilize the Taylor-Goldstein profile. 

This effect of localized damping a150 suggests an explanation in terms of over- 
reflection for the instability of viscous Poiseuille flow, where the inviscid problem is 
stable. It seems plausible that the viscosity, which acts mostly near the boundaries, 
will exhibit a local character, and may therefore be able to induce an over-reflection 
not possible in the inviscid problem. Lindzen and Rambaldi have confirmed this 
numerically and the results will be presented separately. 

Our suggestion that existence of a wave flux away from the critical level is 
necessary for over-reflection is consistent with the results of Lin & Lau (1979) and 
others concerning over-reflection and instability in galaxies. It is a150 reminiscent of 
the argument of Bretherton (1966a) for the existence of critical-level instability in 
a baroclinic flow. 

In  $6 we examine how the reflection coefficient develops in an initial-value problem. 
Several examples are studied numerically. The reflection (and transmission) coefficient 
grows smoothly to its final value, much of the growth being linear in time. The rate 
of growth and the time taken to reach a steady value vary from case to case, and 
we deduce an empirical dependence on the basic-state parameters. The existence of 
a characteristic timescale, independent of Richardson number, is suggested by the 
results. This is not a travel time in any bounded wave region; such a time may be 
relevant in certain problems, but it will always enter as a second, independent 
timescale. We give an example to show that estimates of growth rates of instabilities 
resulting from over-reflection can be substantially improved by allowing for the time 
development of the reflection coefficient. This allows the unambiguous identification 
of instability with over-reflected waves. 

The existence of a characteristic timescale, depending only on the shear, is 
consistent with the first part of a mechanistic picture for over-reflection and 
instability which we describe in $7. The picture consists of three parts: first, the 
wave/mean-flow interaction at the critical level, which is essentially kinematic, 
depending only on shear ; secondly, the maintenance of a disturbance at the critical 
level, which requires the conditions discussed in $$3-5; thirdly, for a normal-mode 
instability, certain extra conditions akin to quantization, of a technical rather than 
basic nature, are required (see Lindzen & Rosenthal 1976; Lindzen, Farrell & Tung 
1980). Such theorems as the Rayleigh inflection-point theorem, the Fjertoft theorem 
and the MileeHoward theorem are primarily concerned with the conditions needed 
for a wave to reach a critical level. 

2. Necessary conditions for instability 
We consider an inviscid incompressible fluid in motion in a vertical plane with 

horizontal coordinate 2 and vertical coordinate z, and are interested in the stability, 
or otherwise, of a basic state in which the fluid has density po(z) and velocity (U(z ) ,  0). 
This state is assumed to be statistically stable : 

S d P  P(%) = --d > 0. 
Po dz 

If (u, w), p and p’ are small-amplitude perturbations in the velocity, pressure and 
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density fields, they satisfy the linearized equations of motion 
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u,+uu,+wuz = --p,, 
Po l \  

1 
w,+ uw, = 

PI + up; + WPOZ = 0, 

u,+w, = 0. 

Introducing a stream function $, the vorticity w and a scaled density p given by 

9 
Po 

w = w,-u,, w = -$ 2' u = $z, p = -p ' ,  

and making the Boussinesq approximation, po = constant in the first two equations 
of (2 .2) ,  the equations become 

w,+ Uw,+ UZz+,  =-p,, ~ t +  Up,+N2$, = 0, $ x x + + z z  = - w .  (2.3) 

If 'normal-mode' solutions are sought in which 

$(x, z ,  t )  = Y(z) eik(,-@, (2.4) 

pzz + Q ( z )  = 0, (2.5) 

and p, w are similarly expressed, the equations reduce to 

where the index of refraction Q is 

N2 Q ( z )  = - k2 -- uzz +- 
u-c (U-C)2' 

For boundary conditions we shall want to consider several possibilities. If the fluid 
is bounded above by a solid wall at zT then the vertical velocity should vanish there, 
or 

Y(zT) = 0. ( 2 . 7 ~ )  

If the fluid is unbounded above we shall assume & ( x )  + Q, = constant as z -+ a ~ .  Then 
the appropriate boundary condition is 

Y ( z ) + O  asz+oo (2.7b) 

if Q, < 0, or a radiation condition 

Yz-i@, Y+O as z + o o  ( 2 . 7 ~ )  

if Q, > 0, where the sign of @, is chosen to be the same as that of [U-c],,. 
If a similar condition is applied a t  some lower boundary, one obtains an eigenvalue 

problem for c, the stability problem. The basic flow is unstable if there is an eigenvalue 
with positive imaginary part. If no lower boundary condition is applied, c may be 
specified in advance, and one obtains the scattering problem. There will always be 
a solution, unique up to a constant factor. 

In  the stability problem, necessary conditions for instability may be derived by 
multiplying (2.5) by ( u - c ) ~  Y*, for various n, and integrating over the fluid (Howard 
1961). The resulting conditions have two major drawbacks. First, because of their 
global nature, they give no insight into the physical mechanism responsible for any 
instability. Secondly, they involve the modal solution Y and its phase speed c. The 
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only condition that can be applied to the basic state alone is that the local Richardson 
number 

P(4 
(dU/dz)2 

Ri(z) = 

must fall below at some point within the fluid for instability to be possible. 
The other conditions that can be derived in this way are the semicircle theorem 

(Howard 196l), which requires that the complex phase speed c of an unstable model 
must lie within the semicircle in the upper half of the complex plane which has the 
range of U for its diameter, and a generalized version of Rayleigh’s theorem (Synge 
1933), which requires that 

(2.9) 

must change sign within the fluid. Unfortunately, this is of little use, as it is satisfied 
by almost all modes that have c, within the range of U .  

Consider for a moment the unstratified case P ( z )  = 0. The Richardson-number 
criterion is no longer relevant (it is always satisfied). Instead there is Fjertoft’s 
criterion (Fjrartoft 1950), which requires that U and U,, must be negatively correlated 
in the sense that 

d2U 2 P ( U - c C , )  
dz2 I U-cI2 
-- 

(2.10) 

for any unstable mode. More importantly however, (2.9) reduces to Rayleigh’s 
theorem (Rayleigh 1880), which requires that U,, change sign within the fluid. Thus 
the relevant criterion for instability in the unstratified case is very different from that 
when N 2  += 0. This reflects the singularity of (2.5) in the limit P + O ,  in which the 
order of the pole in Q at U = c is reduced. 

Rayleigh’s criterion may be derived in other ways that are more physihally 
motivated. Taylor (1915) showed that, in agrowingperturbation, the total momentum 
in a layer of fluid will increase or decrease according to the sign of Uzz, and, since the 
total momentum of an inviscid fluid is fixed, such perturbations are possible only if 
U,, changes sign. Taylor used the fact that individual fluid particles retain their initial 
vorticity throughout any motion to relate the momentum changes to the particle 
displacements during the disturbance. If Na i 0, however, buoyancy forces do change 
particle vorticity. It is possible to bring in particle displacements by using the fact 
that each particle preserves its density, but no useful results appear to come out of 
this approach. Lin (1955) argued that, since a vorticity gradient will support waves 
in the fluid, perturbations in regions of non-zero U,, will be oscillatory in nature, and 
so instability will be possible only if U,, vanishes at some point. Again this argument 
does not appear to have an analogue in the stratified case. In any event, neither of 
these arguments throws light explicitly on the physical mechanisms responsible for 
instability. 

Bretherton (1966~)  showed that in the baroclinic-instability problem (which is 
mathematically the same as unstratified shear flow), a neutral normal-mode solution 
that does not vanish at the critical level will have a downgradient flux of potential 
vorticity at the critical level which cannot be balanced anywhere else in the fluid 
unless the solution is in fact growing. This suggests that the critical level drives the 
instability. No analogue of this result, which was derived using the conservation of 
potential vorticity by a quasi-geostrophic flow, is yet available for stratified shear 
flow. 
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3. Wave over-reflection and instability 
In  the stratified problem, internal waves can be supported both by the density 

gradient and by any vorticity gradient. In fact, solutions of (2.5) will show oscillatory 
or exponential variation with z depending on whether Q is positive or negative, 
provided that Q does not vary too rapidly. As pointed out by Lindzen et al. (1980), 
solutions of (2.5) will be exponential near the critical level if Ri = constant < f ,  
even though Q > 0. 

Near any point where the solution is oscillatory, it  may be approximated by the 
WKB solution 

Y(z) = AQ-f(z) exp { - i s’ &a(z’) dz‘} 

= ‘ p v ( z ) +  vb(4 (say). (3.1) 

How to choose the correct branch of @ in the vicinity of the critical level is discussed 
in detail by Booker & Bretherton (1967), but the solution (3.1) is in any case not valid 
near the critical level if Ri < f there. We may thus take @ to have the same sign 
as U - c .  

With this choice, one finds (following Booker & Bretherton) : 

pu’ = - - p o ( U - c ) ~  = -+ip,k(U-c) (Y*Yz- YYz) 

= !jpo k I U -  c I { I A Iz - I B 1”). (3.2) 

Since the contribution from Yu is positive, and that from YD negative, the former 
represents a wave propagating upwards, the latter one downwards. 

Suppose now the fluid is unbounded below, and there is some height 2, such that 
Q ( z )  is slowly varying and positive ( Q ( z )  3 e > 0) for all z < z,, and there is no critical 
level in z < 2,. The solution in this region is then approximately (3.1). With any of 
the upper boundary conditions (2.7), there is no source of waves above z,. No lower 
boundary condition is needed in this scattering problem, so in view of (3.2), 

is the reflection coefficient of the region of fluid above z, (in the WKB approximation; 
see Appendix C for further discussion). 

What may be said concerning the value of R ?  The Eliassen-Palm (1961) theorems 
state that 

d 
dz pW = -po(U-c)UW and -(%) = 0, (3-4) 

except at a critical level, where there may be a jump in UW. Thus, in the absence of 
a change of sign of U-c in z > z,, UW will have the same value at z = zs as a t  the 
upper boundary, and pW will have the same sign. Since at  the upper boundary, pW 2 0, 
it follows from (3.2) and (3.3) that R < 1.  If U-c does change sign, at z = z, say, 
things may be different. If Ri(z,) > + then Booker & Bretherton (1967) showed that 
both upward- and downward-moving waves are effectively absorbed by the critical 
level, so again R < 1. If Ri(z,) < +, however, it is possible to have R > 1. This was 
first demonstrated numerically by Jones ( 1968). 

Next suppose there is a wave that is over-reflected (R > 1). Suppose a solid 
boundary is placed at  z = zB < z,, and such an upward-moving wave is excited near 
this lower boundary. Neglecting transient effects, the wave will be reflected down from 
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above zs with increased amplitude. On reaching zB, it  will be reflected back upwards 
with no change in amplitude. So long as this wave does not interfere destructively 
with the original wave, this bouncing process can continue, the amplitude of the wave 
increasing indefinitely, and an instability can result. This possibility was first pointed 
out by Lindzen (1974). The growth rate of the instability may be crudely estimated 
as i 

kc - I l n R ,  (3.5) - 27 

where 27 is the time taken for the wave to propagate from zB to the reflecting surface 
and back. 

Lindzen & Rosenthal (1976) showed that all gravity-wave instabilities of a 
Helmholtz velocity profile in a stratified fluid with a lower boundary could be 
identified with neutral over-reflected modes of the same fluid with no lower boundary. 
The growth rate given by (3.5) was always an overestimate of the actual growth rate, 
but this can be ascribed to the fact that transient effects have been neglected. We 
examine this in $6, and show that a much more accurate estimate can be made by 
allowing for the time the reflection coefficient takes to grow. 

Lindzen and Rosenthal (Rosenthal & Lindzen 1983a,b; Lindzen & Rosenthall983) 
extended these results to a continuous profile, and also identified the traditional 
Kelvin-Helmholtz instability with such a mechanism. Lindzen & Tung (1978) showed 
that the same ideas are applicable to the unstratified case, and Lindzen et al. (1980) 
extended them to the baroclinic-instability problem. 

4. Necessary conditions for over-reflection 
Although this gives us an insight into the process behind the instability, it raises 

two more questions : under what circumstances does over-reflection occur at a critical 
level, and what is the physical mechanism responsible for i t ?  

In answer to the first question, we already know that a necessary condition for 
over-reflection in the stratified problem is Ri(z,) < a. As we noted at the beginning 
of $3, the solutions of (25) will usually be exponential in z near the critical level in 
this case. Based on observations in other cases too, Lindzen & Tung (1978) suggested 
that the following ‘geometry’ might be necessary for over-reflection of a wave 
approaching a critical level from below : 

(i) there must be a region below the critical level in which the solutions of (2.5) 
are oscillatory in z (‘wave region I , ) ;  

(ii) the critical level must be separated from wave region I by a region in which 
the solutions are exponential in z (a ‘trapping region ’) ; 

(iii) there must be a second region, above the critical level, in which the solutions 
are oscillatory (‘wave region I1 ’) ; 

(iv) there must be a reflecting surface at the top of the wave region 11. 
The need for ‘wave region I ’ is clear, since there can be no over-reflection if there 

are no waves to be reflected. We shall here show by example that neither the ‘trapping 
region ’ of condition (ii) nor the reflecting surface of condition (iv) is strictly necessary, 
though each may play an important role in some cases. The ‘wave region 11’ of 
condition (iii) does appear to be necessary, qnd we shall discuss it further in $5. 

Consider first the following example, which is due to K. K. Tung (private 
communication). Suppose we have a linear shear 

U(Z) = az (4.1) 
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and a parabolic stability profile 

Then, for a stationary wave (c = 0) 
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P ( 2 )  = pz2 .  

Q(z )  = -k2+p2/a2 = h2, (4.3) 
which we assume is positive. Since Q is positive and constant everywhere, solutions 
are oscillatory everywhere, and the 'trapping region' of condition (ii) is absent (even 
though Ri < +at the critical level). Taking the radiation condition ( 2 . 7 ~ )  as the upper 
boundary condition, the reflecting surface of condition (iv) is also absent, but a 
solution of (2.5) is 

Since U-c changes sign at z = 0, this represents an upward-moving wave in z > 0, 
a downward-moving one in z < 0. That is, we have waves leaving the critical level 
on both sides, without any incoming waves being present: the reflection coefficient 
is infinite. 

The example may seem rather special, since there is no singularity in Q, even though 
there is a critical level.? However, other examples are easily found, and we give two 
here. The first is a slight variation on Tung's example. Again assume linear shear 

Y(z) = eiAz (A > 0). (4.4) 

U = ax, and let 
pz2 ( l z l  2 4, 

W(2) = 

so that for c = 0 

-k2+p = A2 (121 > 6),  

- k 2 + K =  - k 2 + ,  (121 <a),  

a2 

262 Ri 
a2z2 Z 

Q(4 = 

where Ri = /3V2/a2 is the Richardson number in I z I < 6. We assume ha > 0 and 
Ri < $. Then I z I < 6 is a 'trapping region ', so condition (ii) is satisfied, but with (2.7 c) 
as upper boundary condition, the reflecting surface required by condition (iv) is 
absent. Nonetheless, a solution of (2.5) is 

e-iAz + R eiAz 
(2 < --Q 

AziI,(kz) + BziI-,(kz) ( 1 z I < a), (4.7) 

TeiAz ( z  > 61, 

wherep = ( f -  Ri);, I* ,  are modified Bessel functions (see e.g. Abramowitz & Stegun 
1970), $9.6) and R and T are the (complex) reflection and transmission coefficients 
associated with the region l z l  < 6, i.e. with the critical level and its associated 
trapping region'. The constants A ,  B ,  R and T are determined by the requirements 

that Y and should be continuous at z = fa. After some algebra, one finds that 

(4.8) 

- [Mi - (i - 9) I,] [ k K ,  - (iA - 9) I-,] e2iA6 
2A k 
n6 26 , 

R =  
k21L I:, + (A2  +id2) I, I-,  +- C O S , W C + -  ( I  K,+JL I - , )  

t In anticipation of results later in this paper, i t  should be noted that the kinematic role of the 
shear at a critical level does not depend on any singularity. 
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Ri 

0.04 0.08 0.12 0.16 0.20 0.24 

FIGURE 1 .  (a )  Reflection coefficient as a function of Richardson number (Ri) at the critical level 
and width S of the trapping region for the modified Tung example. From (4.8) with k = 2.22. ( b )  
Transmission coefficient for the same example. 

Ri 

where the argument kS is understood for the Bessel functions. I R I and I TI are plotted 
against Ri and S in figure 1. Both exceed 1 for certain values of Ri and S .  

As a second example, again assume U = az, but take 

- - ' + R ~ J ( Z - E ) ~  (1x1 > a), 
-kk2+Ri2/(x-C")2 (121 < S ) ,  Q ( 2 )  = { (4.10) 
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FIGURE 2. Index of refraction &(z) for the second example of $4. From (4.10), with 
F = 0 and representative values of the other parameters. 

where Z = c / a .  Ri, = * /a2  and Ri, = %/a2. Q is plotted in figure 2. Assume Ri, < a, 
and I E I < 6, so that the critical level lies within the 'trapping region' I z I < 6. Assume 
also Ri, > a, so that solutions are oscillatory outside I z I < 6, and the two wave 
regions are present. Since Q < 0 for 1 z - E (  > Ri'f/k, the appropriate boundary 
conditions are (2 .7b) ,  Y+O as z+& 00. 

Unfortunately, the solution of this problem is not one we are interested in. The 
turning points at Iz--El = R d / k  act as reflecting surfaces, and the solution will 
represent a standing wave in each of the two wave regions -17- R d / k  < z < -6 and 
6 < z < --E+ Riflk. There will thus be waves incident on the critical level from both 
sides, and it will not be possible to deduce its reflection and transmission coefficients. 
What we are interested in is a solution representing a wave incident on the critical 
level from one side only, together with the resulting reflected and transmitted waves. 
Such a solution is 

e-pi~(z-Z)iI ipl(k(z-Z))+R @ i n  ( z - Z ) : I - ~ ~ ~ ( ~ ( ~ - Z ) )  (z  < -6), 
!?'(z) = A(z-Z)tIpe(k(z-c"))+B(z-Z)iI_,o(k(z-Z)) (121 < a), (4.11) [ T(z-c")~Iipl(k(z-Z))  (Z > S ) ,  

where p1 = (Ri1-$ and p, = (i-Ri2)i .  This solution does not satisfy the boundary 
conditions, of course. One may just ignore this, or assume that Q is modified for 
l z l  > S + E  ( E  > 0) in such a way as to allow (4.11) to be the exact solution in 
I z I < 6+ E, or assume the fluid to be bounded at z = f (g + E) by perfectly absorbent 
walls, at the lower end of which an upward-moving wave of arbitrary amplitude may 
be generated. 
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In any event, i t  is this solution (4.11) that enables us to find the reflection and 
transmission coefficients R and T of the 'trapping region ' I z I < 6, which contains the 
critical level. Continuity of Y and at z = f8 leads to 

(4.12) 

where W b ,  v ;  SJ = I,(C)I:(c)-I~(c)I,(z), and C* = k(Sfc"). Various standard pro- 
perties of the Bessel functions I, have been used to obtain (4.12) ; they may be found 
in Abramowitz & Stegun (1970, pp. 374-379) for example. 1 R I and I TI are plotted 
against Ri, and Ri, (at c" = 0, k = 1,  S = O . l ) ,  and against complex c" (at Ri, = 0.5, 
Ri, = 0.05) in figure 3. Again, both exceed 1 for certain parameter values. 

As we noted, both these examples do possess the 'trapping region' required by 
condition (ii), even though the example of Tung sho.ws that it is not strictly necessary 
for over-reflection. Except in the special cases where P = 0 or U, = 0 at the critical 
level, however, the condition Ri(z, <a) ,  which is necessary, guarantees that the 
critical level will be embedded in a 'trapping region '. Its role may be to ensure that 
the disturbance reaches the critical level, for, as shown by Bretherton (19663), the 
group velocity of a wave falls to zero as the critical level is approached, and so if the 
wave can propagate right up to the critical level it may take infinitely long to do so. 
Only in the special cases, which include Tung's example, does the group velocity 
remain non-zero at the critical level. Presumably, this is what eliminates the need 
for an exponential 'tunnelling ' region. 

All these examples given show that the reflecting surface of condition (iv) is not 
necessary for over-reflection. This has already been noted by Tai (1983). However, 
such a surface may play an important role in producing over-reflection and 
consequent instability. For suppose that, in the example (4.6), a solid wall is placed 
at some point zT above the critical level (xy > 8).  Neglecting transient effects, consider 
what happens when a wave of unit amplitude is incident from below the critical level. 
A reflected wave will arise, with amplitude R given by (4.8). Also, an upward-moving 
wave of amplitude T,  given by (4.8), will appear in the wave region above the critical 
level. This transmitted wave will be reflected off the wall at p ,  back down to the 
critical level. Assume for convenience that c = 0, so that Q is symmetric in z and the 
reflection and transmission coefficients for a wave incident from above the critical 
level will be the same as those for one incident from below. The transmitted wave, 
of amplitude T ,  will then give rise to a downward-moving wave of amplitude T2 below 
the critical level, adding to the directly reflected wave of amplitude R already there, 
and an upward-moving wave of amplitude TR above the critical level, adding to the 
directly transmitted wave of amplitude T already there. This second upward-moving 
wave will again bounce off the wall at +, return to the critical level, and produce 
another downward-moving wave below the critical level, of amplitude RTB, and 
another upwed-moving wave above the critical level, of amplitude TR2. This 
bouncing about in the upper wave region will continue indefinitely, each bounce 
producing another contribution to the total downward-moving wave below the 
critical level, i.e. another contribution to the 'net' reflection coefficient. The final 
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value of this ‘net’ reflection coefficient is thus 

R‘ = R+ T2 eie (1 + R eie + R2 e2is + . . .), (4.13) 

where 8 is the change in phase experienced by a wave propagating across the upper 
wave region and back (including reflection at zT). If I R I < 1 

T2 eis 
1 - R eie‘ 

R = R +  (4.14) 

Even if both I R I and I TI are less than one, I R’ I may be greater than one. In fact, 
if (RI+I TI > 1 ,  it  may be possible to choose 8 (i.e. zT) so that I R’I > 1 ;  whether 
or not this is the case depends on arg (R-’T). This has a clear interpretation in terms 
of energy ; if 1 R 1 + I TI > 1 the critical level is a source of wave energy, and one only 
needs to contain this energy, avoiding destructive interference, in order to get 
over-reflection. 

If I R I 2 1 and T =k 0 the series in (4.13) diverges, so I R’ I is infinite. In  this case 
the presence of the upper boundary leads to instability in the manner proposed by 
Lindzen and described in $3. It should be noted, however, that the boundary-value 
problem (2 .5 ) ,  (4.6)’ ( 2 . 7 ~ )  always has a solution with c = 0, and in fact this solution 
will have a reflection coefficient given approximately? by (4.14) regardless of the 
magnitude of I R I. If I R I > 1 therefore, the solution of the boundary-value problem 
is misleading; it will give a solution that is unstable and will not be observed in 
practice. Fortunately, the procedure used in solving the boundary-value problem 
makes it easy to avoid overlooking such an instability. For suppose the instability 
has c = co ( I m ( c o )  > 0). Then R = a~ at c = co, and it will usually be the case that 
I R I increases as Im (c )  increases from zero to Im (co).  This is the reverse of the 
situation when there is no instability, when the fact that Im (c )  represents a damping 
will cause I R I to decrease as Im (c)  increases. Since, in the numerical procedure, one 
must solve the problem at a sequence of values of I m  ( c )  (see Appendix A), it  will 
be easy to see whether I R I increases or decreases with increasing Im ( c ) ,  and so 
whether or not there is an instability. 

All the examples so far given satisfy condition (iii): they have a ‘wave region 11’. 
Indeed, extensive numerical searching has failed to produce any example of over- 
reflection without such a region (in an inviscid problem). Also, Rosenthal (1981)  has 

U(z )  = az,  W(z) = $, 6 2 -6 (4.15) shown that if 

and Ri = $/a2 < i, so that the entire region z 2 -6 is ‘trapping’, then the reflection 
coefficient R for a mode with c = 0 always has I R I < 1. This is true either if there 
is a rigid lid at some height above the critical level, or if the fluid is unbounded above. 
It is not hard to extend this result to the case 

(4.16) 

where &/a2 < a and /3i/a2 < a, which again is ‘trapping’ for all z > -6. 

We shall discuss the possible role of this region in $5. 
The evidence, then, is strongly suggestive of the necessity of a second wave region. 

t Since transient effects have been neglected in deriving (4.14). 

FIGURE 3. (a) Reflection coefficient aa a function of Richardson number at the critical level (RiJ 
and outside the trapping region (Ri , )  for the second example of $4. From (4.12) with c‘ = 0, k = 1, 
6 = 0.01. ( b )  Transmission coefficient for the same example. (c) Reflection coefficient as a function 
of complex c for the same example, with Ri, = 0.5 and Ri, = 0.05. ( d )  Transmission coefficient for 
the same example. 
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FIGURE 4. Index of refraction &(z), lacking a wave region above the critical 
level. From (5. l ) ,  with representative parameter values. 

5. The role of the second wave region 
It is known, from consideration of the wave fluxes, that, if there is a region z 2 zo, 

extending to infinity or to a rigid upper boundary, in which solutions of (2.5) are 
exponential in character, and which contains no critical levels, then there will be 
perfect reflection ( I  RI = 1) from the bottom of this region. The solution below zo is 
thus independent of the details of the basic flow above zo. We speculate that, in the 
case of a critical level above which there is no second wave region, the same may be 
true; a wave incident from below will be reflected with little regard for the details 
of the flow above the turning point zo. It will thus not ‘see’ the critical level, and 
will not be over-reflected. 

The role of the second wave region would then be to force some wave flux to pass 
through the critical level, allowing the wave to interact properly with, or ‘see’, it. 
The fact that there is no need for wave containment in this region is consistent with 
this suggestion. If our suggestion were correct, anything which causes a wave flux 
through the critical level should be able to produce over-reflection. In  particular, a 
region of linear damping above the critical level (in this otherwise inviscid problem), 
which would be a sink of wave flux, would draw a flux through the critical level from 
below, and should therefore be able to cause over-reflection just as a second wave 
region does. 

To test this we take 
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0 0.001 0.002 cp 0.003 

FIGURE 5. Reflection coefficient computed numerically for the profile of (5.1) with no added 
damping (lower curve) and with damping given by (5.2) (upper curve), plotted against the 
imaginary part of c introduced for computational reaaons. The parameters used were c, = 0, 
k = 2.22, 8 = 0.26, a = 1, /P = 0.01, p = 0.028, u = 0.015 and B = 0.035. 

where Ri = p/aa < a. The resulting Q is shown for c = 0 in figure 4. There is no wave 
region above the critical level. The solution of (2.5) with (2 .7b)  as upper boundary 
condition is found numerically, as described in Appendix A. Because of the 
singularity in Q at U = c, one must let c have a non-zero imaginary part ici when 
performing the numerical calculation. The derived result is obtained by repeating the 
calculation for a series of successively smaller values of ci and extrapolating to ci = 0. 
Care must be taken to ensure that sufficiently small values of ci are taken, and that 
sufficiently many grid points are taken to resolve the solution adequately. 

The damping is also included in the imaginary part of c, so that when all terms 
are included 

where c{') is the constant inserted for numerical reasons, E is a measure of the 
amplitude of the damping, and g(z )  determines its distribution. We use 

(5.2) c = c,+ici, ci = c{l)+eg(z), 

g(z )  = exp{ -q}. (5.3) 

In  figure 5 we show the computed value of the reflection coefficient R against cil), 
both without damping (E = 0) and with damping (E = 0.035). The other parameters 
used were p = 0.028, cr = 0.015, c, = 0, 6 = 0.026, a = 1, /P = 0.01 and k = 2.22. It 
can be seen that the addition of damping raises the reflection coefficient from 
approximately 0.92 to approximately 1.15. The important thing is that i t  is raised 
above 1. 
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Thus a region of damping can play the role of the second wave region in producing 
over-reflection, and this supports our suggestion that its role is simply to draw some 
wave flux through the critical level. 

This consequence of introducing damping may be of interest in another context, 
as fluid flows with viscosity are almost always unstable when the viscosity is 
sufficiently small, even when the inviscid analysis indicates stability. A resolution for 
this apparent inconsistency was suggested by Taylor (1915), who noted that a finite 
amount of momentum could be transferred to the fluid from its boundaries in the 
presence of even an infinitesimal amount of viscosity. Our new result suggests that 
the viscous stability problem also may be understood in terms of over-reflection. For 
example, in (unstratified) Poiseuille flow 

(5.4) 

a neutral mode with 0 < c < f has two critical levels, between which there is a wave 
region. There is, however, no over-reflection, because Q < 0 between the critical levels 
and the walls at z = 0 and 1, so there is no ‘wave region 11’ for either critical level. 
Since U,, = -a is one-signed, the flow is stable in the inviscid case (Rayleigh’s 
theorem), but it is known to be unstable in the viscous case for any sufficiently small 
viscosity. Since the viscosity is of the form - vq,, it acts as a concentrated damping 
near the boundaries. Also, by permitting diffusion across the critical level, the 
viscosity simulates a ‘trapping region ’ between the wave region and the critical level 
which would otherwise be absent. Lindzen and Rambaldi recently completed 
calculations which confirm the existence of over-reflection in this problem. 

R. 8. Lindzen and J .  W .  Barker 

U(Z) = z( 1 - 2 )  

6. Time development of over-reflection 
The time development of over-reflection has not been studied very much in the 

past. It is of interest for, as noted by Lindzen & Rosenthal (1976), it  will certainly 
affect the growth rate of an instability arising from over-reflection. Moreover, it was 
our hope that watching the evolution of over-reflection would be helpful in discovering 
how the mechanism operates. McIntyre & Weissman (1978) considered a case of 
resonant (infinite) over-reflection in a Helmholtz velocity profile, and found that the 
reflected and transmitted waves grew as the integral of the incident wave. For a 
constant-amplitude incident wave this would mean linear growth. The discontinuous 
Helmholtz velocity profile is a special case, however, and it is not apparent whether 
their result has any generality. Moreover, much of what happens occurs, for the 
Helmholtz profile, in corners where details are obscured. 

In this section we present results of a few experimental integrations of an initial- 
value problem. The equations of motion are (2.3), but we assume solutions of the form 

(6.1) ($@, z , t ) ,  w ( 2 , z ,  t ) ,  p(x,  294) = eikY Y ( Z 9  t ) ,  Q (z ,  4 ,  W z ,  t ) ) ,  

so that the equations become 

(~i-ikW)Q+ikU,, Y = -ikR, --+ikU R i - i k P Y  = 0, ( E - k 2 )  Y = -Q. 

We solve these equations numerically using a scheme due to  Hyman (1979), described 
in Appendix B. 

For the basic state we would like to use the first of the examples given in $4, with 
linear shear and parabolic stability (4.5). Unfortunately, since N2 increases rapidly 

(6-2) 
C t  ) 
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with I z I ,  the vertical group velocity of a wave becomes large at large I z 1, and this 
would require us to use a prohibitively short time step in the numerical calculation. 
To avoid this we set N2 = constant for I z I greater than a particular value z2, and 
modify U so that i t  too is constant for large I z 1, ensuring that Q is a positive constant 
for z 2 z4. We thus have uniform ‘run-up’ regions above and below the critical level. 
The actual choice we make is 

(az  (0 < z < z3 ) ,  

U ( z )  = +a(z3 + z4) + a(z4- z3) f (z3 < < z4), I 

and 

( 6 . 3 ~ )  

(6.3b) 

where z2 = (Nl/N,)zl. These profiles are shown, together with the resulting q, in 
figure 6 .  

The computational domain used, -zT < z < zT, is made as large as possible, 
because i t  is impossible to prevent partial reflection of an outgoing wave a t  the 
boundaries. The computation will be of interest only until reflections from the 
boundaries return to the region near the critical level. For an upper boundary 
condition we use an approximate radiation condition 

IyZ+i(Q(zT)): Y = 0 at z = zT, ( 6 . 4 ~ )  

and we ‘shake ’ the bottom boundary to generate an upward-moving wave : 

!P( - zT, t )  = exp (ipt). (6.4b) 

This produces a wave with horizontal phase speed c = - p / k .  One may take p = 0, 
or equivalently redefine u = u + c  or z = z - c  to ensure that the critical level lies at 
z = 0. A t  t = 0 we take 52 = R = 0. 

We select k = 2.22, a = 1, z3 = 0.9930, z4 = 1.8559 and N; = 15. This ensures that 
Q > 0 for all z ,  so that internal waves are supported everywhere, except perhaps in 
the neighbourhood I z I < z1 of the critical level. Thus the two ‘wave regions’, one 
above and one below the critical level, will be present. By choosing N i  < f ,  the 
Richardson number a t  the critical level Ri, = N i / a 2  will be < f ,  and the region 
I z I < z1 will be a ‘trapping’ region. 

The reflection and transmission coefficients are measured at  the points +z,, which 
are chosen to lie at the edges of the uniform run-up regions, i.e. zR is slightly greater 
than z4. Thus we are not in fact measuring them for the critical level alone, but for 
the whole region -z4 < z < z4, which includes the transition regions I z I = z2 and 
z3 < I z I < z4 that will give rise to partial reflections. We find that the errors so 
introduced are not significant. As discussed in Appendix C, there are other difficulties 
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FIQURE 6. (a) Baaic shear velocity V(z) used in initial-value problem, from (6.3). (b)  Static stability 
W(z) for the same example. (c) Index of refraction &(z) for the same example. 

associated with transient effects, but we fhd  it adequate to use the obvious formulae 
(C7) and (C 8), which reduce, when the incoming wave is assumed to have unit 
amplitude, to 

where m = + (Q(zEl)):. 
The behaviour at the critical level should not depend much on the structure of Q 

away from a neighbourhood of I z I < zl. We were able to verify this, at least for the 
range of parameters we considered. Thus R and T should depend principally on Ria, 
z1 and c ,  as well as t .  

As t + 00 we would expect the values of R and T to approach their values in the 
corresponding steady-scattering problem. Taking c = 0, they should be approximately 
those given by (4.8), plotted in figures 1 and 2, though there will be slight 
discrepancies as a result of partial reflections off the transition regions and the 
presence of a small amount of dissipation in the numerical scheme. 

In  figure 7 ,  R and Tare plotted against time for three runs, each made with different 
values for z1 and Ria. Also shown is the amplitude of the incoming wave, i.e. the 
amplitude of the upgoing wave immediately below z = -z4. 

It can be seen from these figures that the amplitudes of the reflected and 
transmitted waves grow smoothly to their final values, which are approximately the 
same as the values obtained from the steady problem. The incoming wave displays 
a certain roughness, but the amplitude of the transmitted wave vanes smoothly with 
time. The reflected wave displays some roughness, but this may be attributed to 
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FIQURE 7 (a, b ) .  For description see facing page. 
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'1 

O K  I : '  O K  

28 56 84 112 

FIGURE 7. Results of the initial-value problem: incoming wave (dashed line), reflected wave (circles) 
and transmitted wave (crosses) for various cases. (a) Ri, = 0.04, z1 = 0.05; (a) 0.08, 0.025; (c )  0.04, 
0.0375. 

Time 

partial reflections off the transition regions. Over much of the period of growth, the 
growth is approximately linear. 

Both the rate of growth (of R and T) and the time taken to reach a steady value 
clearly depend on the parameters of the basic state. We find, for the nine runs we 
performed, that the growth rate is roughly proportional to z1 at fixed Ri,, and the 
constant varies roughly as Riit. In dimensional form, then, 

where C is either R or T, and AU is the change in the basic velocity of the shear flow 
across the trapping region. All our results fit this formula to within 15 yo. Note that 
this result is of very similar form to the semicircle theorem, as might have been 
expected. 

The time taken to reach a steady value shows no systematic variation with Ri,, 
and all our results are fitted by 

7 + 2  
P = KU' 

This is suggestive of the existence of a characteristic timescale for the development, 
independent of Ri,. This in turn suggests that a kinematic process, involving only 
the action of shear on a wave disturbance, is responsible for the critical-level 
interaction. We shall discuss this further in $7.  

As we noted in $4, in cases where I R I < 1 but I R I +I TI > 1 in the normal-mode 
problem, the inclusion of a rigid upper boundary may lead, via bouncing of the wave 
in the upper wave region, to a net reflection coefficient that exceeds one in magnitude. 
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In this case, the time taken for a wave to cross the upper wave region and return 
enters the problem as a second timescale, distinct from and in addition to the 
timescale associated with the critical level that is measured in this experiment. 

Finally, we give an example to show that consideration of the time development 
of the reflection coefficient allows the growth rate of instabilities resulting from 
over-reflection to be predicted with greater accuracy. We take the first of the profiles 
we used in the initial-value problem, that is with Ri2 = 0.04 and x1 = 0.05. From the 
normal-mode problem we find that the reflection coefficient at  the critical level for 
a wave with c = 0 is R, = 3.05. 

Next, we insert an upper boundary at z = zT, requiring Y(z,) = 0. Again we solve 
the normal-mode problem, looking for that value of c at which the reflection 
coefficient becomes infinite. We then vary Z, until the real part of this value is zero. 
Thus we find that when 

the normal-mode problem has an unstable solution with 

zT = 4.21 (6.9) 

C ,  = 0 ,  ci = 0.013. (6.10) 

This is the true growth rate of the instability. 
From the wave-reflection viewpoint, the instability results from a wave bouncing 

back and forth between the upper boundary (where it is perfectly reflected) and the 
critical level (where it is over-reflected). We have selected Z, so that the bouncing 
waves will all be in phase. Neglecting transient effects, a crudeestimate of the growth 
rate ci is thus given by 

R, = e2kCiT, (6.11) 

where 7 is the time taken for the wave to propagate across the upper wave region. 
Assuming the speed of propagation is the local group velocity for a neutral wave, 
we find that T = 8.42, and so 

ci = 0.030, (6.12) 

which is more than double the true growth rate. 
In  order to take transient effects into account, we propose the following simple 

model. From the initial-value problem, we found R(t) when the incoming wave was 
approximately a step function (figure 7a). Suppose the response is idealized as shown 
in figure 8(a) ,  growing linearly from zero to its final value in a time q. Since the 
problem is linear, we deduce that the response to an incoming wave of amplitude 1/e, 
which lasts only for 0 < t < E ,  is 

(6.13) 

which is shown in figure 8 ( b ) .  Taking the limit as ~ j - 0 ,  the (idealized) response to 
a &function input is found : 

(6.14) 
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FIGURE 8. (a) Idealized time dependence of reflection coefficient of critical level when the incoming 
wave has unit amplitude for t 2 0 (and zero amplitude for t < 0). (b)  Amplitude of reflected wave 
when incoming wave has amplitude l/s for 0 < t < s ( and zero at other times). 

Let f(t) be the amplitude of the upgoing wave immediately above the critical level 
at time t. The amplitude of the downgoing wave there is thenf(t-27). Thus 

f(t) = f f(t’-2~)p(t-t’)dt’ 
-m 

using (6.14)). Now letf(t) = a ekeit, then 

giving 

(6.15) 

(6.16) 

The relation cannot be solved explicitly, but it is easily solved numerically. Using 
q = 65 (from figure 7a), we find a root of (6.14) a t  

ci = 0.011, (6.17) 

which is clearly a much improved estimate of the true growth rate given by (6.10). 
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7. Concluding remarks 
This study began, in fact, with the time-dependent calculations described in $6. 

Our hope was that a detailed description of the time evolution of wave over-reflection 
would help us understand over-reflection mechanistically. Initially we employed basic 
states wherein the upper wave region (‘wave region I1 ’ of $4) was bounded - expecting 
the development of over-reflection to be associated with the wave-travel time in the 
upper wave region. Our finding that over-reflection developed in a signiBcantly shorter 
time than this, led us to realize that wave containment in the upper wave region 
(condition (iv) of $4) was not essential. Thus most of our subsequent cases left wave 
region I1 open. 

A review of our calculational results does suggest a mechanistic picture of wave 
over-reflection (and related instability). While some details remain to be proven, 
a brief description of the suggested picture may be of interest. 

The picture consists in three parts. The first part relates to the interaction of a wave 
disturbance with the mean flow at a critical level. 

This aspect of instability has been approached from a variety of seemingly 
disparate directions - primarily applied to the problem of unstratified shear flow. The 
first approach appears to be that of Orr (1907), who considered an initial perturbation 
of the form sin rnz eikz (in the notation of the present paper) on a Couette flow (U = sz). 
Despite the fact that unstratified Couette flow is stable with respect to normal modes, 
Orr found that his initial perturbation would initially grow before eventually 
decaying algebraically. Indeed the initial magnification became arbitrarily large as 
m/k+co. Simultaneously the disturbance is advected by the mean flow; hence it, 
in effect, is at a critical level. 

This appealing mechanism has been periodically reexamined (Goldstein 1938 ; 
Platzman 1952; Farrell 1982; Boyd 1983). The clearest physical explanation of the 
mechanism is given by Boyd. The crucial feature of the mechanism is the 
conservation of vorticity. Briefly, the initial perturbation must consist in, at least, 
a component in the form of a plane wave whose phaselines are oppositely tilted to 
the direction of the shear. Boyd then shows that the basic shear acts to rotate these 
phaselines in the direction of the shear. Up to the time when the phaselines are vertical 
(i.e. normal to the basic flow), the centres of maximum vorticity will become 
increasingly separated. But, since vorticity is conserved, and since vorticity consists 
in derivatives of velocity, velocity and kinetic energy must increase during this phase. 
For subsequent times, the centres are again brought arbitrarily close and the 
disturbance energy decays. No such simple picture has yet been produced for the 
stratified case; however, Brown & Stewartson (1980) show that similar mathematical 
behaviour obtains in this case, albeit with slightly different algebraic exponents. 
Presumably similar physics is operating. The general impression of the Orr mechanism 
has been that, since it leads to eventual disturbance decay, it is unrelated to normal 
mode instabilities. As we will soon show, this is not logically correct. 

Bretherton’s (1966a, b) approach to disturbance amplification at a critical level 
offer an important insight into this matter. Bretherton showed that a disturbance 
at a critical level will always extract energy from the mean flow. Bretherton’s 
approach differs from Orr’s in that he considers a continuously maintained disturbance ; 
disturbance distortion and decay is not permitted. In essence, we see that by 
maintaining an appropriate disturbance at a critical level, we can continuously excite 
the growing phase of the Orr mechanism. 

This maintenance of an appropriate disturbance at a critical level constitutes the 
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second part of our picture. If there is any portion of the basic state that sustains wave 
propagation, one could imagine generating a wave incident on a critical level, which 
would, in turn, continuously excite the Orr mechanism, whose amplification would 
lead to over-reflection. As we have seen, the situation is not so simple. There are two 
aspects to the problem of a suitable wave disturbance actually being maintained at 
a critical level. 

First (where relevant) we must get around the problem of group velocity going to 
zero at a critical level. This is done by interposing a region of exponential (‘trapping’) 
behaviour between the propagating region and the critical level - thus allowing the 
wave to ‘tunnel’ past the critical level. The existence of the exponential region is, 
by itself, insufficient. If there is no sink for the wave flux on the opposite side of 
the critical level then there will be no tunnelling -just exponential decay, and once 
again the wave disturbance will not reach the critical level. The second aspect consists 
therefore in providing a sink for the wave flux on the opposite side of the critical level. 
As shown in $5,  this sink can be provided by either the second wave region or by 
a region of localized wave damping. Note that many of the well-known necessary 
conditions for instability are simply conditions for waves to reach the critical level. 
The Rayleigh inflection-point theorem and the Fjerrtoft theorem together establish 
the complete necessary wave geometry (Lindzen & Tung 1978) while the Miles-Howard 
theorem (Ri < a) merely assures a trapping region wherein tunnelling can occur. 

The above two parts provide our suggested scenario for the development of wave 
over-reflection and/or overtransmission. Note that in this case the disturbance at the 
critical level is being maintained by the continuously generated ‘incident’ wave. If, 
however, the wave region, where over-reflection is found, is bounded on the side of 
the wave region away from the critical level by a reflecting surface, then the 
over-reflected wave can be reflected back toward the critical level, leading to a 
self-maintained disturbance at the critical level. This leads us to the third part of our 
picture, which is specifically concerned with the development of unstable normal 
modes. The existence of the reflecting surface (which need not be perfectly reflecting - 
we only require that the product of reflection and over-reflection exceed unity) is not 
enough. In addition we need a ‘ quantization ’ condition : the thickness of the wave 
region must be such that the over-reflected and reflected waves have the appropriate 
phase relations to satisfy boundary conditions. These conditions have been discussed 
at length in Lindzen & Rosenthal(l976) and in Lindzen et al. (1980). The conditions 
are technical rather than basic, and reflect the fact that normal-mode instabilities 
are a special subset of the broader class of situations wherein waves entract energy 
from the mean flow. This third part, nevertheless, makes very clear the essential 
importance to shear instability of there being a t  least one wave region. The point 
is that waves carry a directed energy flux whose direction can be reversed at a 
reflecting surface. This in turn provides a convenient explanation of why viscous 
unstratified Couette flow is stable while viscous Poiseuille flow is unstable: Couette 
flow sustains wave propagation in no place, while Poiseuille flow sustains propagation 
in the middle of the parabolic flow. 

The above scenario appears appropriate to all plane parallel flow instabilities: 
stratified and unstratified, viscous and inviscid. The specific application to viscous 
Poiseuille flow will be reported separately. 

This work was supported by NSF Grant ATM-82-05638 and by NASA Grant NGL 
22-007-228. Conversations with K. K. Tung, B. Farrell, A. J. Rosenthal and 
C. C. Lin are gratefully acknowledged. 
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Appendix A. Numerical solution of the normal-mode problem 
To solve (2.5) numerically, we introduce a grid of points z, = z B + ( v - 1 ) 6 z ,  

1 < v < N +  1, where 6z = (zT-zB)/(N- l ) ,  and zB, zT are the bottom and top of the 
computational domain, which includes the extra point z ~ + ~  above the upper 
boundary. Then (2 .5)  is approximated by 

where Q, = Q(z,)  and 9, is an approximation to Y(z,). Introducing a,, = $,/@,,-l, 

a, = [2-((62)2QY-ay+1]-1 ( 2  < v 4 N ) .  (A 2 )  

Thus, once a, or aN+l is known, all the as are easily found. If the upper boundary 
is a solid wall, then aN = $N = 0. If the fluid extends to infinity, the upper boundary 
condition is either a radiation condition (if QN > 0) or a boundedness condition (if 
QN < 0), both of which may be written as 

Yz+ ( -Q(z)):  Y = 0 at z = zT, (A 3) 

which is approximated by 

$“+I- F N - 1 - k  262( -&N)’ Y N  = 0, (A 4 )  

or equivalently aN+1-a;;’+26z(-QN):  = 0. (A 5) 

U N  = [I +6Z( - & ~ ) : - $ 6 2 ) ~  Q ~ 1 - l .  

Eliminating aN+l between (A 2 )  and (A 5 )  gives 

(A 6) 

Once the a, are found, the $, may be found from 

$v = a Y 9 Y - l ’  (A 7) 

where @1 may be chosen arbitrarily to fix the amplitude of the solution. 
Since Q becomes infinite where U ( z )  = c for a neutral mode (with real c ) ,  one must 

introduce some artificial damping by letting c have a small positive imaginary part 
ci. The desired solution is obtained by solving for a series of successively smaller values 
of ci. Consequently a large number of grid points are needed to adequately resolve 
the solution near a critical level. Nonetheless, the amount of computing involved is 
small. 

This method was used by, and described in, Lindzen et al. (1980). 

Appendix B. Numerical solution of the initial-value problem 
To solve the system (6.2), again introduce a grid z, and let Q?), R?) and yls”) be 

the approximate solutions at grid point v at time t ,  = n6t. The solution can be 
advanced one time step in two stages. Given a!.) and R!,), 1 ,< v < N ,  one solves for 
Fun) from an approximation to 

!€&-k2Y = -Q, 

$(zB) = ei@ , Y+O asz+co. 
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We use the fourth-order-accurate Numerov scheme : 

D+D-(Wvfl)-i!jk2(6~)2 W/))-k2WYfl) = -Q(fl)-1(6~)2D Y 12 + -  D Qp), 
P v n )  = eWn, ] (B2)  

Do q ) + + k ( e i 1 + 4 W ) +  !?'@Il) = 0, 

from which !P$il and w) can be eliminated to leave a tridiagonal system. 

to 
Now that Wfl) is known, R(fl+l) and GVfl+l) may be found from an approximation 

Note these are ordinary differential equations in t ,  and no boundary conditions are 
needed (we take Q = R = 0 at t = 0). We use a predictor-corrector scheme due to 
Hyman (1979) : 

P$fl+l) = Yp-l)  + 2 6t G,( Fn)), 
034) 

flvn+1) = g 4  v) + y(yn-l) + 4 6t G,( Ffl)) + 2 6t G,( Fn+l))}. } 
Note that to evaluate G,(Ffl+')) requires the Wfl+l) corresponding to the first 
approximation to a(n+l) to be known. Thus (B 2) must be solved twice at each step. 
This is not a severe drawback. This scheme is chosen because of its excellent stability 
properties. It is third-order accurate. One may take a longer time step than allowed 
by a simple leapfrog scheme, and if desired may add dissipation without losing 
stability or the explicit nature of the scheme. The decoupling of odd and even time 
steps associated with leapfrog is also suppressed. 

Appendix C. Reflection and transmission coefficients 
In the normal-mode problem (2.5), the approximate WKB solution is 

Y = A & t  exp {i s' @dz} +B&4 exp { -i 5' Gdz}, 

where @ has the same sign as U- c. From this, we may define the ratio of downward- 
to upward-moving waves at any point by 

If there is no source of waves above z,,, R is the reflection coefficient of the region 
z 2 2,. 

The ratio of upward-moving waves at two different points z1 and z, is 
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A ,  

FIQURE 9. Configuration considered in Appendix C. 

or, numerically, 

This is the transmission coefficient of the region z1 < z < z,, provided that there is 
no downward-moving wave at z,, i.e. B, = 0. 

In a uniform region, where Q = m2 > 0 and m has the same sign as U - c ,  these 
formulae reduce to 

= A eimz + B e-imz, (C 6) 

(a,+, -a~l)-2im6z 
(a,+,-a;')-2irn62 ' 

In  most cases it is impossible to avoid partial reflections off regions where 
N2 9 constant or U,, =k 0, i.e. off inhomogeneities in the index of refraction Q. Then 
measurement of the reflection and transmission coefficient of a particular region, such 
as the critical level and its surrounding 'trapping region ', is complicated by the fact 
that there is a small-amplitude wave incident from above as well as the wave from 
below. Unless Q is symmetric about the critical level, two realizations will be needed 
to find these coefficients, for example with the principal wave incident from below 
and then from above. 

To see this, consider a region with reflection and transmission coefficients R, and 
T, for a wave incident from below, R, and T, for one from above. Let A, and B, be 
the upward and downward waves below, A, and B, those above (see figure 9). Then, 
in two realizations (1) and (2), 

B!') = A?) R, + BPI T,, 

BY) = A!,) R, + Bp) T,, A?) = Bp) R, +A?) T,, l 3  

from which R,, R,, T,, T, may be found. In  the symmetric case, R, = R,, = T,, one 
set of equations is sufficient. Note that there is no need to worry about the phase 
in the WKB solution (C l), provided the same reference points are used in both 
realizations, in order to get the magnitudes of the Rs and Ts correct. 

In the initial-value problem (6.2) the formulae (C 2)-(C 8) may still be applied to 

AP) = BP) R, +A!') T 
(C 9) 
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the solution !Fn) at any time step. However, if there is rapid variation of A and B 
with z, they may not give very accurate results. In particular, the computed values 
may show spurious oscillations of wavenumber 2m, since if B = B(z) in (C 6), for 
example, (C 7 )  gives 

If such oscillations are observed, it may be advisable to use a different measure for 
R. We did not find this necessary in any calculation presented in this paper. 
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